

INTERNSHIP OFFER CH-2025-000222

St. Gallen, Switzerland

INTERNSHIP HOST

Name of Company Empa

Website https://www.empa.ch/

Address of Company Dübendorf Switzerland

Number of Employees 1000

Business or Product Research

STUDENT REQUIRED

General Discipline Biology; Microbiology

Field of Study

Completed Years of Study 2

Language Required English Good (B1, B2) Or German Good (B1, B2)

Required Qualifications and Skills Studying Biology / Microbiology with previous laboratory experience

Student Status Requirements Must be enrolled during entire internship (company rule)

Other Requirements/Information

INTERNSHIP OFFER

40 - 52 weeks

Latest Possible Start Date 01-Apr-2025 Within Months

Jan-2025 - Mar-2026 Company Closed WIthin

2300 CHF per Month

approx. 10 % Social security AHV/IV

Deductions Expected

Payment Method Bank Transfer

Arranged by **Employer**

Estimated Cost of Living including Lodging 1650 CHF / Month

Working Environment: Research and development

Working Hours / Week: 42.0

Empa is a national research laboratory and part of the ETH Domain. We conduct cutting-edge materials and technology research, generating interdisciplinary solutions to major challenges faced by industry, and create the necessary scientific basis to ensure that our society develops in a sustainable manner.

Wood decay fungi play an important role as recyclers of organic matter in the nutrient cycle. The risks of wood degradation by fungi are widely discussed, but little attention is given to the opportunity to apply wood decay fungi for wood functionalization, modification and/or wood protection. These techniques can make otherwise inexpensive and fast-growing types of wood, such as ash and beech, more attractive for furniture and other applications. We develop sustainable approaches to produce a hybrid living material with both living (fungi))

and nonliving elements (wood) that adds complexity and functionality to wood. We have shown that with knowledge of the co-evolutionary adaptation of a wood decay fungus to a wood substrate and by manipulating environmental conditions, we made it possible to trigger and standardize emission of bioluminescence. Energy savings and a decrease in CO2 emissions would arise from the sustainable production and use of bioluminescent wood to light up our houses and neighborhoods. You will be working in this field of research.

Benefit: Half fare card

ADDITIONAL INFORMATION

Any student with Non-EU/EFTA nationality needs an official letter from their university, confirming that the internship is compulsory (required for visa/work permit).

Deadline for Nomination - 27-Oct-2024